Boundedness of pseudodifferential operators on modulation spaces
نویسندگان
چکیده
منابع مشابه
Composition and Spectral Invariance of Pseudodifferential Operators on Modulation Spaces
We introduce new classes of Banach algebras of pseudodifferential operators with symbols in certain modulation spaces and investigate their composition and the functional calculus. Operators in these algebras possess the spectral invariance property on the associated family of modulation spaces. These results extend and contain Sjöstrand’s theory, and they are obtained with new phase space meth...
متن کاملPseudodifferential Operators on L, Wiener Amalgam and Modulation Spaces
We give a complete characterization of the continuity of pseudodifferential operators with symbols in modulation spaces M, acting on a given Lebesgue space L. Namely, we find the full range of triples (p, q, r), for which such a boundedness occurs. More generally, we completely characterize the same problem for operators acting on Wiener amalgam space W (L, L) and even on modulation spaces M . ...
متن کاملwavelets, modulation spaces and pseudidifferential operators
مبحث تحلیل زمان-فرکانسی سیگنالها یکی از مهمترین زمینه های مورد بررسی پژوهشگران علوم ÷ایه کاربردی و فنی مهندسی میباشد.در این پایان نامه فضاهای مدولاسیون به عنوان زمینه اصلی این بررسی ها معرفی گردیده اند و نتایج جدیدی که در حوزه های مختلف ریاضی،فیزیک و مهندسی کاربرداساسی و فراوانی دارند استوار و بیان شده اند.به ویژه در این پایان نامه به بررسی و یافتن مقادیر ویژه عملگر های شبه دیفرانسیل با سمبل در...
Counterexamples for Boundedness of Pseudodifferential Operators
This is the classical version of pseudodifferential operators that is used in the investigation of partial differential operators, cf. [21]. In the language of physics, the Kohn–Nirenberg correspondence and its relatives such as the Weyl correspondence are methods of quantization. In the language of engineering, they are time-varying filters. The Kohn–Nirenberg correspondence is usually analyze...
متن کاملBoundedness of Fourier Integral Operators on Modulation Spaces
It is known that Fourier integral operators arising when solving Schrödinger-type operators are bounded on the modulation spaces Mp,q, for 1 ≤ p = q ≤ ∞, provided their symbols belong to the Sjöstrand class M. However, they generally fail to be bounded on Mp,q for p 6= q. In this paper we study several additional conditions, to be imposed on the phase or on the symbol, which guarantee the bound...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2003
ISSN: 0022-247X
DOI: 10.1016/s0022-247x(03)00364-0